
Perl version 5.10.0 documentation - Switch

Page 1http://perldoc.perl.org

NAME
Switch - A switch statement for Perl

VERSION
This document describes version 2.11 of Switch,
 released Nov 22, 2006.

SYNOPSIS
 use Switch;

 switch ($val) {
	 case 1		 { print "number 1" }
	 case "a"	 { print "string a" }
	 case [1..10,42]	 { print "number in list" }
	 case (@array)	 { print "number in list" }
	 case /\w+/	 { print "pattern" }
	 case qr/\w+/	 { print "pattern" }
	 case (%hash)	 { print "entry in hash" }
	 case (\%hash)	 { print "entry in hash" }
	 case (\&sub)	 { print "arg to subroutine" }
	 else		 { print "previous case not true" }
 }

BACKGROUND
[Skip ahead to DESCRIPTION if you don't care about the whys
 and wherefores of this control
structure]

In seeking to devise a "Swiss Army" case mechanism suitable for Perl,
 it is useful to generalize this
notion of distributed conditional
 testing as far as possible. Specifically, the concept of "matching"

between the switch value and the various case values need not be
 restricted to numeric (or string or
referential) equality, as it is in other languages. Indeed, as Table 1 illustrates, Perl
 offers at least
eighteen different ways in which two values could
 generate a match.

	 Table 1: Matching a switch value ($s) with a case value ($c)

 Switch Case Type of Match Implied Matching Code
 Value Value
 ====== ===== ===================== =============

 number same numeric or referential match if $s == $c;
 or ref equality

	 object method	 result of method call match if $s->$c();
	 ref name 				 match if defined $s->$c();
		 or ref

 other other string equality match if $s eq $c;
 non-ref non-ref
 scalar scalar

 string regexp pattern match match if $s =~ /$c/;

 array scalar array entry existence match if 0<=$c && $c<@$s;
 ref array entry definition match if defined $s->[$c];

Perl version 5.10.0 documentation - Switch

Page 2http://perldoc.perl.org

 array entry truth match if $s->[$c];

 array array array intersection match if intersects(@$s,
@$c);
 ref ref (apply this table to
 all pairs of elements
 $s->[$i] and
 $c->[$j])

 array regexp array grep match if grep /$c/, @$s;
 ref

 hash scalar hash entry existence match if exists $s->{$c};
 ref hash entry definition match if defined $s->{$c};
 hash entry truth match if $s->{$c};

 hash regexp hash grep match if grep /$c/, keys
%$s;
 ref

 sub scalar return value defn match if defined $s->($c);
 ref return value truth match if $s->($c);

 sub array return value defn match if defined $s->(@$c);
 ref ref return value truth match if $s->(@$c);

In reality, Table 1 covers 31 alternatives, because only the equality and
 intersection tests are
commutative; in all other cases, the roles of
 the $s and $c variables could be reversed to produce a

different test. For example, instead of testing a single hash for
 the existence of a series of keys (
match if exists $s->{$c}),
 one could test for the existence of a single key in a series of
hashes
 (match if exists $c->{$s}).

DESCRIPTION
The Switch.pm module implements a generalized case mechanism that covers
 most (but not all) of
the numerous possible combinations of switch and case
 values described above.

The module augments the standard Perl syntax with two new control
 statements: switch and case.
The switch statement takes a
 single scalar argument of any type, specified in parentheses. switch
stores this value as the
 current switch value in a (localized) control variable.
 The value is followed by
a block which may contain one or more
 Perl statements (including the case statement described
below).
 The block is unconditionally executed once the switch value has
 been cached.

A case statement takes a single scalar argument (in mandatory
 parentheses if it's a variable;
otherwise the parens are optional) and
 selects the appropriate type of matching between that
argument and the
 current switch value. The type of matching used is determined by the
 respective
types of the switch value and the case argument, as
 specified in Table 1. If the match is successful,
the mandatory
 block associated with the case statement is executed.

In most other respects, the case statement is semantically identical
 to an if statement. For example,
it can be followed by an else
 clause, and can be used as a postfix statement qualifier.

However, when a case block has been executed control is automatically
 transferred to the statement
after the immediately enclosing switch
 block, rather than to the next statement within the block. In
other
 words, the success of any case statement prevents other cases in the
 same scope from
executing. But see Allowing fall-through below.

Perl version 5.10.0 documentation - Switch

Page 3http://perldoc.perl.org

Together these two new statements provide a fully generalized case
 mechanism:

 use Switch;

 # AND LATER...

 %special = (woohoo => 1, d'oh => 1);

 while (<>) {
	 chomp;
 switch ($_) {
 case (%special) { print "homer\n"; } # if $special{$_}
 case /[a-z]/i { print "alpha\n"; } # if $_ =~ /a-z/i
 case [1..9] { print "small num\n"; } # if $_ in [1..9]
 case { $_[0] >= 10 } { print "big num\n"; } # if $_ >= 10
 print "must be punctuation\n" case /\W/; # if $_ ~= /\W/
	 }
 }

Note that switches can be nested within case (or any other) blocks,
 and a series of case
statements can try different types of matches
 -- hash membership, pattern match, array intersection,
simple equality,
 etc. -- against the same switch value.

The use of intersection tests against an array reference is particularly
 useful for aggregating integral
cases:

 sub classify_digit
 {
 switch ($_[0]) { case 0 { return 'zero' }
 case [2,4,6,8] { return 'even' }
 case [1,3,5,7,9] { return 'odd' }
 case /[A-F]/i { return 'hex' }
 }
 }

Allowing fall-through
Fall-though (trying another case after one has already succeeded)
 is usually a Bad Idea in a switch
statement. However, this
 is Perl, not a police state, so there is a way to do it, if you must.

If a case block executes an untargeted next, control is
 immediately transferred to the statement after
the case statement
 (i.e. usually another case), rather than out of the surrounding switch block.

For example:

 switch ($val) {
 case 1 { handle_num_1(); next } # and try next
case...
 case "1" { handle_str_1(); next } # and try next
case...
 case [0..9] { handle_num_any(); } # and we're done
 case /\d/ { handle_dig_any(); next } # and try next
case...
 case /.*/ { handle_str_any(); next } # and try next
case...
 }

Perl version 5.10.0 documentation - Switch

Page 4http://perldoc.perl.org

If $val held the number 1, the above switch block would call the
 first three handle_...
subroutines, jumping to the next case test
 each time it encountered a next. After the third case block
was executed, control would jump to the end of the enclosing switch block.

On the other hand, if $val held 10, then only the last two handle_...
 subroutines would be called.

Note that this mechanism allows the notion of conditional fall-through.
 For example:

 switch ($val) {
 case [0..9] { handle_num_any(); next if $val < 7; }
 case /\d/ { handle_dig_any(); }
 }

If an untargeted last statement is executed in a case block, this
 immediately transfers control out of
the enclosing switch block
 (in other words, there is an implicit last at the end of each
 normal case
block). Thus the previous example could also have been
 written:

 switch ($val) {
 case [0..9] { handle_num_any(); last if $val >= 7; next; }
 case /\d/ { handle_dig_any(); }
 }

Automating fall-through
In situations where case fall-through should be the norm, rather than an
 exception, an endless
succession of terminal nexts is tedious and ugly.
 Hence, it is possible to reverse the default
behaviour by specifying
 the string "fallthrough" when importing the module. For example, the following
code is equivalent to the first example in Allowing fall-through:

 use Switch 'fallthrough';

 switch ($val) {
 case 1 { handle_num_1(); }
 case "1" { handle_str_1(); }
 case [0..9] { handle_num_any(); last }
 case /\d/ { handle_dig_any(); }
 case /.*/ { handle_str_any(); }
 }

Note the explicit use of a last to preserve the non-fall-through
 behaviour of the third case.

Alternative syntax
Perl 6 will provide a built-in switch statement with essentially the
 same semantics as those offered by
Switch.pm, but with a different
 pair of keywords. In Perl 6 switch will be spelled given, and case
will be pronounced when. In addition, the when statement
 will not require switch or case values to be
parenthesized.

This future syntax is also (largely) available via the Switch.pm module, by
 importing it with the
argument "Perl6". For example:

 use Switch 'Perl6';

 given ($val) {
 when 1 { handle_num_1(); }
 when ($str1) { handle_str_1(); }
 when [0..9] { handle_num_any(); last }
 when /\d/ { handle_dig_any(); }

Perl version 5.10.0 documentation - Switch

Page 5http://perldoc.perl.org

 when /.*/ { handle_str_any(); }
 default { handle anything else; }
 }

Note that scalars still need to be parenthesized, since they would be
 ambiguous in Perl 5.

Note too that you can mix and match both syntaxes by importing the module
 with:

	 use Switch 'Perl5', 'Perl6';

Higher-order Operations
One situation in which switch and case do not provide a good
 substitute for a cascaded if, is
where a switch value needs to
 be tested against a series of conditions. For example:

 sub beverage {
 switch (shift) {
 case { $_[0] < 10 } { return 'milk' }
 case { $_[0] < 20 } { return 'coke' }
 case { $_[0] < 30 } { return 'beer' }
 case { $_[0] < 40 } { return 'wine' }
 case { $_[0] < 50 } { return 'malt' }
 case { $_[0] < 60 } { return 'Moet' }
 else { return 'milk' }
 }
 }

(This is equivalent to writing case (sub { $_[0] < 10 }), etc.; $_[0]
 is the argument to the
anonymous subroutine.)

The need to specify each condition as a subroutine block is tiresome. To
 overcome this, when
importing Switch.pm, a special "placeholder"
 subroutine named __ [sic] may also be imported. This
subroutine
 converts (almost) any expression in which it appears to a reference to a
 higher-order
function. That is, the expression:

 use Switch '__';

 __ < 2

is equivalent to:

 sub { $_[0] < 2 }

With __, the previous ugly case statements can be rewritten:

 case __ < 10 { return 'milk' }
 case __ < 20 { return 'coke' }
 case __ < 30 { return 'beer' }
 case __ < 40 { return 'wine' }
 case __ < 50 { return 'malt' }
 case __ < 60 { return 'Moet' }
 else { return 'milk' }

The __ subroutine makes extensive use of operator overloading to
 perform its magic. All operations
involving __ are overloaded to
 produce an anonymous subroutine that implements a lazy version
 of
the original operation.

Perl version 5.10.0 documentation - Switch

Page 6http://perldoc.perl.org

The only problem is that operator overloading does not allow the
 boolean operators && and || to be
overloaded. So a case statement
 like this:

 case 0 <= __ && __ < 10 { return 'digit' }

doesn't act as expected, because when it is
 executed, it constructs two higher order subroutines
 and
then treats the two resulting references as arguments to &&:

 sub { 0 <= $_[0] } && sub { $_[0] < 10 }

This boolean expression is inevitably true, since both references are
 non-false. Fortunately, the
overloaded 'bool' operator catches this
 situation and flags it as a error.

DEPENDENCIES
The module is implemented using Filter::Util::Call and Text::Balanced
 and requires both these
modules to be installed.

AUTHOR
Damian Conway (damian@conway.org). The maintainer of this module is now Rafael
 Garcia-Suarez
(rgarciasuarez@gmail.com).

BUGS
There are undoubtedly serious bugs lurking somewhere in code this funky :-)
 Bug reports and other
feedback are most welcome.

LIMITATIONS
Due to the heuristic nature of Switch.pm's source parsing, the presence of
 regexes with embedded
newlines that are specified with raw /.../
 delimiters and don't have a modifier //x are
indistinguishable from
 code chunks beginning with the division operator /. As a workaround
 you must
use m/.../ or m?...? for such patterns. Also, the presence
 of regexes specified with raw ?...?
delimiters may cause mysterious
 errors. The workaround is to use m?...? instead.

Due to the way source filters work in Perl, you can't use Switch inside
 an string eval.

If your source file is longer then 1 million characters and you have a
 switch statement that crosses the
1 million (or 2 million, etc.)
 character boundary you will get mysterious errors. The workaround is to

use smaller source files.

COPYRIGHT
 Copyright (c) 1997-2006, Damian Conway. All Rights Reserved.
 This module is free software. It may be used, redistributed
 and/or modified under the same terms as Perl itself.

