QRegion Class Reference

Constant  Value  Description 

QRegion::Rectangle  0  the region covers the entire rectangle. 
QRegion::Ellipse  1  the region is an ellipse inside the rectangle. 
Constructs an empty region.
See also isEmpty().
Constructs a rectangular or elliptic region.
If t is Rectangle, the region is the filled rectangle (x, y, w, h). If t is Ellipse, the region is the filled ellipse with center at (x + w / 2, y + h / 2) and size (w ,h).
Constructs a polygon region from the point array a with the fill rule specified by fillRule.
If fillRule is Qt::WindingFill, the polygon region is defined using the winding algorithm; if it is Qt::OddEvenFill, the oddeven fill algorithm is used.
Warning: This constructor can be used to create complex regions that will slow down painting when used.
Constructs a new region which is equal to region r.
Constructs a region from the bitmap bm.
The resulting region consists of the pixels in bitmap bm that are Qt::color1, as if each pixel was a 1 by 1 rectangle.
This constructor may create complex regions that will slow down painting when used. Note that drawing masked pixmaps can be done much faster using QPixmap::setMask().
This is an overloaded function.
Create a region based on the rectange r with region type t.
If the rectangle is invalid a null region will be created.
See also QRegion::RegionType.
Returns the bounding rectangle of this region. An empty region gives a rectangle that is QRect::isNull().
Returns true if the region contains the point p; otherwise returns false.
This is an overloaded function.
Returns true if the region overlaps the rectangle r; otherwise returns false.
Returns a platformspecific region handle. The Handle type is HRGN on Windows, Region on X11, and RgnHandle on Mac OS X. On Qt for Embedded Linux it is void *.
Warning: This function is not portable.
Returns a region which is the intersection of this region and r.
The figure shows the intersection of two elliptical regions.
This function was introduced in Qt 4.2.
See also subtracted(), united(), and xored().
Returns a region which is the intersection of this region and the given rect.
This function was introduced in Qt 4.4.
See also subtracted(), united(), and xored().
Returns true if this region intersects with region, otherwise returns false.
This function was introduced in Qt 4.2.
Returns true if this region intersects with rect, otherwise returns false.
This function was introduced in Qt 4.2.
Returns true if the region is empty; otherwise returns false. An empty region is a region that contains no points.
Example:
QRegion r1(10, 10, 20, 20); r1.isNull(); // false r1.isEmpty(); // false QRegion r2(40, 40, 20, 20); QRegion r3; r3.isNull(); // true r3.isEmpty(); // true r3 = r1.intersected(r2); // r3: intersection of r1 and r2 r3.isNull(); // false r3.isEmpty(); // true r3 = r1.united(r2); // r3: union of r1 and r2 r3.isNull(); // false r3.isEmpty(); // false
Returns the number of rectangles that will be returned in rects().
This function was introduced in Qt 4.4.
Returns an array of nonoverlapping rectangles that make up the region.
The union of all the rectangles is equal to the original region.
See also setRects().
Sets the region using the array of rectangles specified by rects and number. The rectangles must be optimally YX sorted and follow these restrictions:
See also rects().
Returns a region which is r subtracted from this region.
The figure shows the result when the ellipse on the right is subtracted from the ellipse on the left (left  right).
This function was introduced in Qt 4.2.
See also intersected(), united(), and xored().
Translates (moves) the region dx along the X axis and dy along the Y axis.
This is an overloaded function.
Translates the region point.x() along the x axis and point.y() along the y axis, relative to the current position. Positive values move the region to the right and down.
Translates to the given point.
Returns a copy of the region that is translated dx along the x axis and dy along the y axis, relative to the current position. Positive values move the region to the right and down.
This function was introduced in Qt 4.1.
See also translate().
This is an overloaded function.
Returns a copy of the regtion that is translated p.x() along the x axis and p.y() along the y axis, relative to the current position. Positive values move the rectangle to the right and down.
This function was introduced in Qt 4.1.
See also translate().
Returns a region which is the union of this region and r.
The figure shows the union of two elliptical regions.
This function was introduced in Qt 4.2.
See also intersected(), subtracted(), and xored().
Returns a region which is the union of this region and the given rect.
This function was introduced in Qt 4.4.
See also intersected(), subtracted(), and xored().
Returns a region which is the exclusive or (XOR) of this region and r.
The figure shows the exclusive or of two elliptical regions.
This function was introduced in Qt 4.2.
See also intersected(), united(), and subtracted().
Returns the region as a QVariant
Returns true if this region is different from the other region; otherwise returns false.
Applies the intersected() function to this region and r. r1&r2 is equivalent to r1.intersected(r2).
See also intersected().
This is an overloaded function.
This function was introduced in Qt 4.4.
Applies the intersected() function to this region and r and assigns the result to this region. r1&=r2 is equivalent to r1 = r1.intersected(r2).
See also intersected().
This is an overloaded function.
This function was introduced in Qt 4.4.
Applies the united() function to this region and r. r1+r2 is equivalent to r1.united(r2).
See also united() and operator().
This is an overloaded function.
This function was introduced in Qt 4.4.
Applies the united() function to this region and r and assigns the result to this region. r1+=r2 is equivalent to r1 = r1.united(r2).
See also intersected().
Returns a region that is the union of this region with the specified rect.
See also united().
Applies the subtracted() function to this region and r. r1r2 is equivalent to r1.subtracted(r2).
See also subtracted().
Applies the subtracted() function to this region and r and assigns the result to this region. r1=r2 is equivalent to r1 = r1.subtracted(r2).
See also subtracted().
Assigns r to this region and returns a reference to the region.
Returns true if the region is equal to r; otherwise returns false.
Applies the xored() function to this region and r. r1^r2 is equivalent to r1.xored(r2).
See also xored().
Applies the xored() function to this region and r and assigns the result to this region. r1^=r2 is equivalent to r1 = r1.xored(r2).
See also xored().
Applies the united() function to this region and r. r1r2 is equivalent to r1.united(r2).
See also united() and operator+().
Applies the united() function to this region and r and assigns the result to this region. r1=r2 is equivalent to r1 = r1.united(r2).
See also united().
Writes the region r to the stream s and returns a reference to the stream.
See also Format of the QDataStream operators.
Reads a region from the stream s into r and returns a reference to the stream.
See also Format of the QDataStream operators.
Copyright © 2009 Nokia Corporation and/or its subsidiary(ies)  Trademarks  Qt 4.5.2 
Попытка перевода Qt документации. Если есть желание присоединиться, или если есть замечания или пожелания, то заходите на форум: Перевод Qt документации на русский язык... Люди внесшие вклад в перевод: Команда переводчиков 